Text Classification

Text Mining, Transforming Text into Knowledge

Ayoub Bagheri

Last week

- Text preprocessing
- Tokenization
- Token removal
- Stemming
- Text representation

Today

- Text classification
- Classification pipeline
- Classification algorithms
- Evaluation

Text Classification

Text mining process

- Data: Text
- **Text Preprocessing:** is the process of cleaning, normalizing, and structuring raw text data into a format suitable for analysis or input into NLP models. (week 2)
- **Text transformation, feature generation:** involves converting text data into a different format or structure, such as numerical vectors or simplified forms, to make it suitable for analysis or modeling. (weeks 1, 2, 3, 6, 7, 8)
- **Feature selection**: is the process of identifying and selecting the most relevant features from a dataset to improve model performance and reduce complexity. (week 4)
- **Data mining, pattern discovery**: is the process of extracting meaningful patterns and knowledge from text. (weeks 3, 5, 7, 8, 9)
- Interpretation / Evaluation: is the process of understanding and explaining the model and patterns / is the assessment process to measure performance and quality. (weeks 3-9)

Text transformation, feature generation Bag-of-Words representation

Doc1: Text mining is to identify useful information. Doc2: Useful information is mined from text. Doc3: Apple is delicious.

Document-Term matrix (DTM):

	text	information	identify	mining	mined	is	useful	to	from	apple	delicious
Doc1	1	1	1	1	0	1	1	1	0	0	0
Doc2	1	1	0	0	1	1	1	0	1	0	0
Doc3	0	0	0	0	0	1	0	0	0	1	1

Text classification

- **Supervised learning**: Learning a function that maps an input to an output based on example input-output pairs.
 - infer a function from labeled training data
 - use the inferred function to label new instances
- Human experts annotate a set of text data
 - Training set

Document	Class			
Email1	Not spam			
Email2	Not spam			
Email3	Spam			
•••				

Applications

- Assigning subject categories, topics, or genres
- Spam detection
- Authorship identification
- Age/gender identification
- Language Identification
- Sentiment analysis

- Which one **is not** a text classification task? (less likely to be)
 - Author's gender detection from text
 - Finding about the smoking conditions of patients from clinical letters
 - Grouping similar news articles
 - Classifying reviews into positive and negative sentiment

Terminology

- Features: information which is used to separate data into classes
- **Prediction**: the output of the model, which can be compared to the correct labels (our ground truth)
- **Parameters**: the data in the model
- **Training**: fitting parameters to the data
- Hyperparameters: the "settings" of the model; these are choices made by you

Types of classification

1. Binary classification:

- **Definition**: Involves two categories or classes.
- **Examples**: True/False, Yes/No, Spam/Not Spam, Positive/Negative sentiment.

2. Multiclass classification:

- **Definition**: Involves more than two categories or classes.
- **Examples**: Classifying animals into Cats/Dogs/Birds, predicting the genre of a book (e.g., Fiction/Non-fiction/Science/History).

3. Multilabel classification:

- **Definition**: Each instance can belong to multiple classes simultaneously.
- **Examples**: Tagging a research article with multiple topics like "Machine Learning," "Natural Language Processing," and "Healthcare.", Assigning multiple genres to a book.

Simple pipeline

Text Collection

Opening the pipeline

Preparing data

- Data collection
- Text pre-processing
- Data splitting
 - Training
 - Validation (development)
 - to tune the hyperparameters
 - Test
- Text representation

Data splitting

Methods:

- Train-Test Split
 - Split the dataset into two parts: training and testing (e.g., 80%-20%).
- K-fold cross validation
 - Split the dataset into K non-overlapping folds of approximately equal size.
- Leave-One-Out Cross-Validation
 - A special case of K-Fold where K=N (number of data points).

K-fold cross validation

1. Purpose:

- Evaluates the performance of a model on unseen data by splitting the dataset into K subsets (folds).
- Ensures that every data point gets a chance to be in both the training and validation sets.

2. How it Works:

- Split the data into K equally-sized folds.
- Train the model on K-1 folds and validate it on the remaining fold.
- Repeat the process K times, each time using a different fold for validation.

3. Advantages:

- Reduces the risk of overfitting compared to a single train-test split.
- Provides a more robust estimate of the model's generalization performance.

K-fold cross validation

https://scikitlearn.org/stable/modules/ cross validation.html

How to classify this document?

Text Classification: definition

- Input:
 - a document d
 - a fixed set of classes $C = \{c_1, c_2, ..., c_j\}$
- Output: a predicted class c ∈ C

Classification Algorithms

Hand-coded rules

- Rules based on combinations of words or other features
- Accuracy can be high: If rules carefully refined by expert
- But building and maintaining these rules is expensive
- Data/Domain specifics

Supervised Machine Learning

- Input:
 - a document d
 - a fixed set of classes $C = \{c_1, c_2, ..., c_j\}$
 - A training set of *m* hand-labeled documents (*d*₁, *c*₁),...,(*d*_m, *c*_m)
- Output:
 - a learned classifier $y:d \rightarrow c$

Common algorithms

- K-nearest neighbors
- Naïve bayes
- Logistic regression
- Support vector machines
- Neural networks
- Deep learning

K-nearest neighbors

- K-Nearest Neighbors (KNN) is a simple, non-parametric algorithm that classifies data points based on the majority class of their K nearest neighbors in feature space, using a distance metric such as Euclidean distance.
- Non-parametric methods: make no strong assumptions about the data's underlying distribution.

Finding Neighbors & Voting for Labels

Naive Bayes

• **Naive Bayes** is a probabilistic machine learning algorithm based on Bayes' Theorem, which assumes that all features are independent of each other (a "naive" assumption) and uses this simplification to classify data efficiently.

• For a document *d* and a class *C*

 $P(c \mid d) = \frac{P(d \mid c)P(c)}{P(d)}$

Learning naive Bayes

$$C_{MAP} = \underset{c \in C}{\operatorname{argmax}} P(c \mid d)$$

$$= \underset{c \in C}{\operatorname{argmax}} \frac{P(d \mid c)P(c)}{P(d)}$$

$$= \underset{c \in C}{\operatorname{argmax}} \frac{P(d \mid c)P(c)}{P(d)}$$
Bayes Rule

$$= \underset{c \in C}{\operatorname{argmax}} P(d \mid c) P(c)$$

Dropping the denominator

- - -

Learning naive Bayes

$$c_{MAP} = \operatorname*{argmax}_{c \in C} P(d \mid c) P(c)$$

Document d represented as features x1..xn

$$= \underset{c \in C}{\operatorname{argmax}} P(x_1, x_2, \dots, x_n \mid c) P(c)$$

Could only be estimated if a very, very large number of training examples was available.

We can just count the relative frequencies in a corpus

Learning naive Bayes

•Simply use the frequencies in the data

$$\hat{P}(c_{j}) = \frac{doccount(C = c_{j})}{N_{doc}}$$
$$\hat{P}(w_{i} | c_{j}) = \frac{count(w_{i}, c_{j})}{\sum_{w \in V} count(w, c_{j})}$$

Neural networks, "deep learning"

- **Neural networks** are machine learning models inspired by the structure of the human brain, consisting of layers of interconnected nodes (neurons) that process and learn patterns in data by adjusting weights through a process called backpropagation.
 - Compositional approach to curve-fitting;
 - "Biologically inspired"

(but don't take that too seriously);

• Sound cool.

Neural network

Neural network

"Hidden" nodes: Example: $h_1 = f(w_{11}x_1 + w_{12}x_2)$

-10

• Output: • $y = f(w_{21}h_1 + w_{22}h_2 + \dots + w_{25}h_5)$

"Activation function":

10

What makes a neural net "deep"?

More on neural networks

• Weeks 6, 7

Ensemble classifiers

- We can combine multiple classifiers
 - Random forest classifier
 - fit multiple decision trees, average over predictions
 - Less "volatile" than a single decision tree
 - Voting classifier
 - Fit multiple classifiers and let them "vote" on the result
 - Classifiers may be of different classes!

Selecting hyperparameters

- A hyperparameter is a parameter whose value is used to control the learning process, which must be configured before the process starts.
 - Experts input
 - Hyperparameter optimization: the selection process will be automated
 - Random search
 - Grid search: systematically go through your data
 - Other optimization techniques

Evaluation

No free lunch

"Any two optimization algorithms are equivalent when their performance is averaged across all possible problems"

(Wolpert & MacReady)

Prediction Error

High

Model Complexity

Confusion matrix

• Accuracy is a valid choice of evaluation for classification problems which are well balanced and not skewed.

Precision and recall

• **Precision**: % of selected items that are correct **Recall**: % of correct items that are selected

- Precision is a valid choice of evaluation metric when we want to be very sure of our prediction.
- Recall is a valid choice of evaluation metric when we want to capture as many positives as possible.

Source: https://en.wikipedia.org/wiki/F-score

A combined measure: F

• A combined measure that assesses the P/R tradeoff is F measure (weighted harmonic mean):

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

- The harmonic mean is a very conservative average
- People usually use balanced F1 measure
 - i.e., with $\beta = 1$ (that is, $\alpha = \frac{1}{2}$): $F = \frac{2PR}{(P+R)}$

Evaluation metrics: multiclass classification

- Evaluation is less straightforward with multiple classes
- Precision/recall/F1 per class
- But what if we want a single score?
 - Macro F1: average of F1 score for each class
 - Micro F1: uses total number of true/false positives/negatives

Conclusion

- Understanding the classification pipeline is essential for building effective models, from preprocessing text data to training and evaluation.
- There are different algorithms available for text classification, each with its strengths.
- Accurate evaluation using metrics like accuracy, precision, recall, and cross-validation ensures reliable model performance and generalization to unseen data.

Practical 3: Multiclass text classification of 20newsgroups articles.

