Word Embedding

Text Mining, Transforming Text into
Knowledge
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Last week

 Text clustering
* Topic modeling
* Evaluation



Today

« Text representation

* Word embedding
« Skipgram learning
 Pre-trained embeddings



Text mining process
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Text mining process

 Text transformation, feature generation: involves converting text data into a different
format or structure, such as numerical vectors or simplified forms, to make it suitable for
analysis or modeling. (weeks 1, 2, 3, 6, 7, 8)

 Data mining, pattern discovery: is the process of extracting meaningful patterns and
knowledge from text. (weeks 3, 5, 7, 8, 9)

* Interpretation / Evaluation: is the process of understanding and explaining the model and
patterns / is the assessment process to measure performance and quality. (weeks 3-9)



Word Embedding



Word representations

How can we represent the meaning of words?

So, we can ask:

« How similar is cat to dog, or Paris to London?
« How similar is document A to document B?



Word as vectors

Can we represent words as vectors?

The vector representations should:
 capture semantics

= similar words should be close to each other in the
vector space

» relation between two vectors should reflect the
relationship between the two words

* be efficient (vectors with fewer dimensions are easier to
work with)

 be interpretable



Word as vectors




Word as vectors



https://fh295.github.io/simlex.html

Words as Vectors



One-hot encoding

Map each word to a unique identifier
e.g. cat (3) and dog (5).
 Vector representation: all zeros, except 1 at the ID
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One-hot encoding

Map each word to a unique identifier
e.g. cat (3) and dog (5).
 Vector representation: all zeros, except 1 at the ID

cat o O 1 O O O o Even related words

have distinct vectors!
dog o o o o 1 O O
High number of

car O O O O O o0 1 dimensions
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Words that
occur in similar contexts tend to have
similar meanings.

You shall know a word by the company it keeps.
(Firth, ). R. 1957:11)



Word vectors based on co-occurrences

doc; doco docs docs docs docg docs
cat 5 2 0 1 4 0 0

i dog 7 3 1 o) 2 o) o)
word-document matrix

car O 0 1 3 2 1 1



Word vectors based on co-occurrences

word-document matrix

word-word matrix

cat
dog

car

cat
dog

car

doc; doco, docs docy docs docg docy

5 2 0 1 4 0 0
7 3 1 0 2 0 0
0 0 1 3 2 1 1

cat dog car bike book house tree
0 3 1 1 1 2 3
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Word vectors based on co-occurrences

There are many variants:
 Context (words, documents, which window size, etc.)
 Weighting (raw frequency, etc.)

Vectors are sparse: Many zero entries.
Therefore: Dimensionality reduction is often used (e.g., SVD)

These methods are sometimes called count-based methods as
they work directly on co-occurrence counts.
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Word embeddings

« Vectors are short;
typically 50-1024 cat OB
dimensions ©
* Vectors are dense
(mostly non-zero values)
* Very effective for many
NLP tasks ©
 Individual dimensions
are less interpretable ®

dog 0.32

0.48

0.42

-0.01

-0.09

0.28

0.78
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How do we learn word embeddings?



Learning word embeddings

Cat — 0012 5o -002
dog= 0.92 ... -0.1
tree = -0.12 ... 0.1




Learning word embeddings

Cat — 0012 5o '002

g(’;dzvec’ dog= 0.92 ... -0.1

ove,  tree= -0.12 ... O.1
fastText
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Training data for word embeddings

* Use text itself as training data for the model!
« A form of self-supervision.

» Train a classifier (neural network, logistic regression,
or SVM, etc.) to predict the next word given previous
words.
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Exercise: Word prediction task

Yesterday | went to the

A new study has highlighted the positive

Which word comes next?
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Word2Vec

« Popular embedding method
* Very fast to train
e |[dea: predict rather than count

- https:/ /projector.tensorflow.org/



https://projector.tensorflow.org/

Word2Vec

The domestic cat is a small, typically furry carnivorous mammal
W_o9 W_q Wy Wy We Wy Wy W

We have target words (cat) and context words (here:
window size = 5).
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Word2Vec

* Instead of counting how often each word w occurs near a
target word

* Train a classifier on a binary prediction task:
* Is w likely to show up near target?

« We don't actually care about this task
« But we'll take the learned classifier weights as the word embeddings

* Big idea: self-supervision
« Aword c that occurs near target in the corpus as the gold "correct
answer" for supervised learning
* No need for human labels
* Bengio et al. (2003); Collobert et al. (2011)
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Word2Vec algorithms

Continuous Bag-Of-Words (CBOW)
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one snowy ? she went
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Word2Vec algorithms

Continuous Bag-Of-Words (CBOW)

e

i

= & B

-

one snowy ? she went

skipgram

%.ﬂ.é

? ? day ? ?




Skipgram overview

The domestic cat is a small, typically furry carnivorous mammal
1. Create examples

 Positive examples: Target word and word (w)  context(c) label
neighboring context cat small 1
cat furry 1

« Negative examples: Target word and
randomly sampled words from the
lexicon (negative sampling)

2. Train a logistic regression model
to distinguish between the positive
and negative examples

Embedding vectors are essentially
: . |
3. The resulting weights are the EETRIESEE

embeddings!

cat car 0
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Skipgram embeddings

aardvark

apricot

0 . zebra

aardvark

apricot

zebra

1.d

000

- W target words

- C context words
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Learning the classifier

* How to learn?
- Stochastic gradient descent!

* SGNS learns two sets of embeddings
« Target embeddings matrix W
« Context embedding matrix C

* It's common to just add them together, representing
word 1 as the vector Wi + Ci
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Skipgram

1. Treat the target word t and a neighboring context
word c as positive examples.

2. Randomly sample other words in the lexicon to get
negative examples

3. Use logistic regression to train a classifier to
distinguish those two cases

4. Use the learned weights as the embeddings
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Skipgram classifier

A probabilistic classifier, given
 a test target word w
* its context window of L words c1.L

 Estimates probability that w occurs in this window based on
similarity of w (embeddings) to ci.. (embeddings).

« To compute this, we just need embeddings for all the words.
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Pre-trained Embeddings



Pre-trained embeddings

* | want to build a system to solve a task (e.g.,
sentiment analysis)

 Use pre-trained embeddings. Should | fine-tune?
 Lots of data: yes
* Just a small dataset: no

- Analysis (e.g., bias, semantic change)
* Train embeddings from scratch
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Practical
Word embedding



Questions?



Skipgram

The domestic cat is a small, typically furry carnivorous mammal
W_9 W_q Wy Wy Wy Wz Wy Wy

We have target words (cat) and context words (here: window size = 5).

The probability that c is a real context word, and the probability that c is
not a real context word:

P(+|w, c)
P(-lw,c)=1-P(+|w, c)
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Skipgram

Similarity is computed from dot product

* Intuition: A word c is likely to occur near the target w if its embedding is
similar to the target embedding.

~ W -C

« Two vectors are similar if they have a high dot product
« Cosine similarity is just a normalized dot product

. e P(t+lw,e) = olc-w) = Y
Turn this into a probability using +exp(—c-w)

the sigmoid function: P(—|w,c)

1 — P(+|w,c)

~ 1+exp(c-w)
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How Skipgram classifier computes P(+|w, c)

1

P(+|w,c) = o(c-w)= T exp(—c )

This is for one context word, but we have lots of context words.

We'll assume independence and just multiply them:

P(+w,c1L) = |[o(ci-w)
=1

log P(+|w,c1.1)

L
Zlog o(ci-w)
i=1

41



Word2vec: how to learn vectors

 Given the set of positive and negative training
Instances, and an initial set of embedding vectors

* The goal of learning is to adjust those word vectors
such that we:

the similarity of the target word, context
word pairs (w, cpos) drawn from the positive data

the similarity of the (w, cneg) pairs drawn
from the negative data.
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Loss function for one w with Cpos , Cneg1 ...Cnegr

« Maximize the similarity of the target with the actual context words, and
minimize the similarity of the target with the k negative sampled non-

neighbor words.

Lck

k
= —log P(-|—|w,cpos)HP(—|w,cnegi)}

i=1

i k
_ logP(—|—|w,cpos)+ZlogP(—|w,cnegi)}

i=1

- k
— logP(+|W>Cp0s)+ZlOg(l —P(—I—|W,Cnegi)):|

i=1

- k
— |log o (cpos - W) + Z log 6/ (—Cpeg, - W):|

i=1
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Learning the classifier

* How to learn?
- Stochastic gradient descent!



