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Last week
• Text clustering
• Topic modeling
• Evaluation
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Today
• Text representation
•Word embedding
• Skipgram learning
• Pre-trained embeddings
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Text mining process
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Text mining process
• Data: Text
• Text Preprocessing: is the process of cleaning, normalizing, and structuring raw text data 

into a format suitable for analysis or input into NLP models. (week 2)
• Text transformation, feature generation: involves converting text data into a different 

format or structure, such as numerical vectors or simplified forms, to make it suitable for 
analysis or modeling. (weeks 1, 2, 3, 6, 7, 8)

• Feature selection: is the process of identifying and selecting the most relevant features 
from a dataset to improve model performance and reduce complexity. (week 4)

• Data mining, pattern discovery: is the process of extracting meaningful patterns and 
knowledge from text. (weeks 3, 5, 7, 8, 9)

• Interpretation / Evaluation: is the process of understanding and explaining the model and 
patterns / is the assessment process to measure performance and quality. (weeks 3-9)
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Word Embedding



Word representations
How can we represent the meaning of words?

So, we can ask:
• How similar is cat to dog, or Paris to London?
• How similar is document A to document B?
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Word as vectors
Can we represent words as vectors?
The vector representations should:
• capture semantics

§ similar words should be close to each other in the 
vector space

§ relation between two vectors should reflect the 
relationship between the two words

• be efficient (vectors with fewer dimensions are easier to 
work with)
• be interpretable
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Word as vectors

How similar are the following two words? (not similar 0–10 very similar)

smart and intelligent:
easy and big:
easy and difficult:
hard and difficult:
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Word as vectors

How similar are the following two words? (not similar 0–10 very similar)

smart and intelligent: 9.20
easy and big:               1.12
easy and difficult:       0.58
hard and difficult:       8.77

(SimLex-999 dataset, https://fh295.github.io/simlex.html)
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Words as Vectors



One-hot encoding
Map each word to a unique identifier
e.g. cat (3) and dog (5).
• Vector representation: all zeros, except 1 at the ID
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One-hot encoding
Map each word to a unique identifier
e.g. cat (3) and dog (5).
• Vector representation: all zeros, except 1 at the ID

What are limitations
of one-hot encodings?
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One-hot encoding
Map each word to a unique identifier
e.g. cat (3) and dog (5).
• Vector representation: all zeros, except 1 at the ID

Even related words
have distinct vectors!

High number of
dimensions
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Distributional hypothesis: Words that 
occur in similar contexts tend to have 
similar meanings.

You shall know a word by the company it keeps.
(Firth, J. R. 1957:11)
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Word vectors based on co-occurrences

documents as context
word-document matrix
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Word vectors based on co-occurrences

documents as context
word-document matrix

neighboring words as context
word-word matrix
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Word vectors based on co-occurrences
There are many variants:
• Context (words, documents, which window size, etc.)
• Weighting (raw frequency, etc.)

Vectors are sparse: Many zero entries.
Therefore: Dimensionality reduction is often used (e.g., SVD)

These methods are sometimes called count-based methods as 
they work directly on co-occurrence counts.
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Word embeddings
• Vectors are short; 
  typically 50-1024 
  dimensions J
• Vectors are dense
  (mostly non-zero values)
• Very effective for many
  NLP tasks J
• Individual dimensions
  are less interpretable L
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How do we learn word embeddings?



Learning word embeddings
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Learning word embeddings
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Training data for word embeddings
• Use text itself as training data for the model!
• A form of self-supervision.

• Train a classifier (neural network, logistic regression, 
or SVM, etc.) to predict the next word given previous 
words.
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Exercise: Word prediction task
Yesterday I went to the ?

A new study has highlighted the positive ?

Which word comes next?
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Word2Vec
• Popular embedding method
• Very fast to train
• Idea: predict rather than count

• https://projector.tensorflow.org/
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Word2Vec

We have target words (cat) and context words (here: 
window size = 5).
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Word2Vec
• Instead of counting how often each word w occurs near a 

target word
• Train a classifier on a binary prediction task:
• Is w likely to show up near target?

• We don’t actually care about this task
• But we'll take the learned classifier weights as the word embeddings

• Big idea: self-supervision
• A word c that occurs near target in the corpus as the gold "correct 

answer" for supervised learning
• No need for human labels
• Bengio et al. (2003); Collobert et al. (2011)

27



Word2Vec algorithms
Continuous Bag-Of-Words (CBOW)
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Word2Vec algorithms
Continuous Bag-Of-Words (CBOW)     skipgram
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Skipgram overview
The domestic cat is a small, typically furry carnivorous mammal
1. Create examples
• Positive examples: Target word and
  neighboring context
• Negative examples: Target word and
   randomly sampled words from the
   lexicon (negative sampling)

2. Train a logistic regression model
      to distinguish between the positive
      and negative examples
3. The resulting weights are the
      embeddings!

Embedding vectors are essentially
a byproduct!
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Skipgram embeddings

target words

context words
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Learning the classifier
• How to learn?
• Stochastic gradient descent!

• SGNS learns two sets of embeddings
• Target embeddings matrix W
• Context embedding matrix C

• It's common to just add them together, representing 
word i as the vector Wi + Ci
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Skipgram
1. Treat the target word t and a neighboring context 

word c as positive examples.
2. Randomly sample other words in the lexicon to get 

negative examples
3. Use logistic regression to train a classifier to 

distinguish those two cases
4. Use the learned weights as the embeddings
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Skipgram classifier
• A probabilistic classifier, given
• a test target word w
• its context window of L words c1:L

• Estimates probability that w occurs in this window based on 
similarity of w (embeddings) to c1:L (embeddings).

• To compute this, we just need embeddings for all the words.
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Pre-trained Embeddings



Pre-trained embeddings
• I want to build a system to solve a task (e.g., 

sentiment analysis)
• Use pre-trained embeddings. Should I fine-tune?
• Lots of data: yes
• Just a small dataset: no

• Analysis (e.g., bias, semantic change)
• Train embeddings from scratch
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Practical
Word embedding



Questions?



Skipgram

We have target words (cat) and context words (here: window size = 5).

The probability that c is a real context word, and the probability that c is 
not a real context word:
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Skipgram
Similarity is computed from dot product
• Intuition: A word c is likely to occur near the target w if its embedding is 

similar to the target embedding.

• Two vectors are similar if they have a high dot product
• Cosine similarity is just a normalized dot product

Turn this into a probability using 
the sigmoid function:
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How Skipgram classifier computes P(+|w, c) 

This is for one context word, but we have lots of context words. 
We'll assume independence and just multiply them:
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Word2vec: how to learn vectors
• Given the set of positive and negative training 

instances, and an initial set of embedding vectors
• The goal of learning is to adjust those word vectors 

such that we:
•Maximize the similarity of the target word, context 

word pairs (w , cpos) drawn from the positive data
•Minimize the similarity of the (w , cneg) pairs drawn 

from the negative data.
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Loss function for one w with cpos , cneg1 ...cnegk

• Maximize the similarity of the target with the actual context words, and 
minimize the similarity of the target with the k negative sampled non-
neighbor words.

43



Learning the classifier
• How to learn?
• Stochastic gradient descent!
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