
Word Embedding
Text Mining, Transforming Text into
Knowledge

Ayoub Bagheri

Last week
• Text clustering
• Topic modeling
• Evaluation

2

Today
• Text representation
•Word embedding
• Skipgram learning
• Pre-trained embeddings

3

Text mining process

4

Text mining process
• Data: Text
• Text Preprocessing: is the process of cleaning, normalizing, and structuring raw text data

into a format suitable for analysis or input into NLP models. (week 2)
• Text transformation, feature generation: involves converting text data into a different

format or structure, such as numerical vectors or simplified forms, to make it suitable for
analysis or modeling. (weeks 1, 2, 3, 6, 7, 8)

• Feature selection: is the process of identifying and selecting the most relevant features
from a dataset to improve model performance and reduce complexity. (week 4)

• Data mining, pattern discovery: is the process of extracting meaningful patterns and
knowledge from text. (weeks 3, 5, 7, 8, 9)

• Interpretation / Evaluation: is the process of understanding and explaining the model and
patterns / is the assessment process to measure performance and quality. (weeks 3-9)

5

Word Embedding

Word representations
How can we represent the meaning of words?

So, we can ask:
• How similar is cat to dog, or Paris to London?
• How similar is document A to document B?

7

Word as vectors
Can we represent words as vectors?
The vector representations should:
• capture semantics

§ similar words should be close to each other in the
vector space

§ relation between two vectors should reflect the
relationship between the two words

• be efficient (vectors with fewer dimensions are easier to
work with)
• be interpretable

8

Word as vectors

How similar are the following two words? (not similar 0–10 very similar)

smart and intelligent:
easy and big:
easy and difficult:
hard and difficult:

9

Word as vectors

How similar are the following two words? (not similar 0–10 very similar)

smart and intelligent: 9.20
easy and big: 1.12
easy and difficult: 0.58
hard and difficult: 8.77

(SimLex-999 dataset, https://fh295.github.io/simlex.html)

10

https://fh295.github.io/simlex.html

Words as Vectors

One-hot encoding
Map each word to a unique identifier
e.g. cat (3) and dog (5).
• Vector representation: all zeros, except 1 at the ID

12 / 56

One-hot encoding
Map each word to a unique identifier
e.g. cat (3) and dog (5).
• Vector representation: all zeros, except 1 at the ID

What are limitations
of one-hot encodings?

13

One-hot encoding
Map each word to a unique identifier
e.g. cat (3) and dog (5).
• Vector representation: all zeros, except 1 at the ID

Even related words
have distinct vectors!

High number of
dimensions

14

Distributional hypothesis: Words that
occur in similar contexts tend to have
similar meanings.

You shall know a word by the company it keeps.
(Firth, J. R. 1957:11)

15

Word vectors based on co-occurrences

documents as context
word-document matrix

16

Word vectors based on co-occurrences

documents as context
word-document matrix

neighboring words as context
word-word matrix

17

Word vectors based on co-occurrences
There are many variants:
• Context (words, documents, which window size, etc.)
• Weighting (raw frequency, etc.)

Vectors are sparse: Many zero entries.
Therefore: Dimensionality reduction is often used (e.g., SVD)

These methods are sometimes called count-based methods as
they work directly on co-occurrence counts.

18

Word embeddings
• Vectors are short;
 typically 50-1024
 dimensions J
• Vectors are dense
 (mostly non-zero values)
• Very effective for many
 NLP tasks J
• Individual dimensions
 are less interpretable L

19

How do we learn word embeddings?

Learning word embeddings

21

Learning word embeddings

22 / 56

Training data for word embeddings
• Use text itself as training data for the model!
• A form of self-supervision.

• Train a classifier (neural network, logistic regression,
or SVM, etc.) to predict the next word given previous
words.

23

Exercise: Word prediction task
Yesterday I went to the ?

A new study has highlighted the positive ?

Which word comes next?

24

Word2Vec
• Popular embedding method
• Very fast to train
• Idea: predict rather than count

• https://projector.tensorflow.org/

25

https://projector.tensorflow.org/

Word2Vec

We have target words (cat) and context words (here:
window size = 5).

26

Word2Vec
• Instead of counting how often each word w occurs near a

target word
• Train a classifier on a binary prediction task:
• Is w likely to show up near target?

• We don’t actually care about this task
• But we'll take the learned classifier weights as the word embeddings

• Big idea: self-supervision
• A word c that occurs near target in the corpus as the gold "correct

answer" for supervised learning
• No need for human labels
• Bengio et al. (2003); Collobert et al. (2011)

27

Word2Vec algorithms
Continuous Bag-Of-Words (CBOW)

28

Word2Vec algorithms
Continuous Bag-Of-Words (CBOW) skipgram

29

Skipgram overview
The domestic cat is a small, typically furry carnivorous mammal
1. Create examples
• Positive examples: Target word and
 neighboring context
• Negative examples: Target word and
 randomly sampled words from the
 lexicon (negative sampling)

2. Train a logistic regression model
 to distinguish between the positive
 and negative examples
3. The resulting weights are the
 embeddings!

Embedding vectors are essentially
a byproduct!

30

Skipgram embeddings

target words

context words

31

Learning the classifier
• How to learn?
• Stochastic gradient descent!

• SGNS learns two sets of embeddings
• Target embeddings matrix W
• Context embedding matrix C

• It's common to just add them together, representing
word i as the vector Wi + Ci

32

Skipgram
1. Treat the target word t and a neighboring context

word c as positive examples.
2. Randomly sample other words in the lexicon to get

negative examples
3. Use logistic regression to train a classifier to

distinguish those two cases
4. Use the learned weights as the embeddings

33

Skipgram classifier
• A probabilistic classifier, given
• a test target word w
• its context window of L words c1:L

• Estimates probability that w occurs in this window based on
similarity of w (embeddings) to c1:L (embeddings).

• To compute this, we just need embeddings for all the words.

34

Pre-trained Embeddings

Pre-trained embeddings
• I want to build a system to solve a task (e.g.,

sentiment analysis)
• Use pre-trained embeddings. Should I fine-tune?
• Lots of data: yes
• Just a small dataset: no

• Analysis (e.g., bias, semantic change)
• Train embeddings from scratch

36

Practical
Word embedding

Questions?

Skipgram

We have target words (cat) and context words (here: window size = 5).

The probability that c is a real context word, and the probability that c is
not a real context word:

39

Skipgram
Similarity is computed from dot product
• Intuition: A word c is likely to occur near the target w if its embedding is

similar to the target embedding.

• Two vectors are similar if they have a high dot product
• Cosine similarity is just a normalized dot product

Turn this into a probability using
the sigmoid function:

40 / 56

How Skipgram classifier computes P(+|w, c)

This is for one context word, but we have lots of context words.
We'll assume independence and just multiply them:

41

Word2vec: how to learn vectors
• Given the set of positive and negative training

instances, and an initial set of embedding vectors
• The goal of learning is to adjust those word vectors

such that we:
•Maximize the similarity of the target word, context

word pairs (w , cpos) drawn from the positive data
•Minimize the similarity of the (w , cneg) pairs drawn

from the negative data.

42

Loss function for one w with cpos , cneg1 ...cnegk

• Maximize the similarity of the target with the actual context words, and
minimize the similarity of the target with the k negative sampled non-
neighbor words.

43

Learning the classifier
• How to learn?
• Stochastic gradient descent!

44

