Deep Learning &
LLMs

Text Mining, Transforming Text into
Knowledge

Ayoub Bagheri

lllllllll A

Last week

« Text representation

* Word embedding
« Skipgram learning
 Pre-trained embeddings

Today

 Introduction to neural networks
» Feed-forward & deep neural networks
e State-of-the-art methods

Text mining process

/V Interpretation /
l I Evaluation

mER / Data Mining / ;
: . Pattern Discovery 5
i - s
o II Feature Selection ;
& radl ||l A |
m_ | : :
| Text Transformation :
/ B (Feature Generation) 5
n Text Preprocessing 4 f
A E E
Text f » :
i s
| v

Text mining process

 Text transformation, feature generation: involves converting text data into a different
format or structure, such as numerical vectors or simplified forms, to make it suitable for
analysis or modeling. (weeks 1, 2, 3, 6, 7, 8)

- Data mining, pattern discovery: is the process of extracting meaningful patterns and
knowledge from text. (weeks 3, 5, 7, 8, 9)

* Interpretation / Evaluation: is the process of understanding and explaining the model and
patterns / is the assessment process to measure performance and quality. (weeks 3-9)

Introduction

Why should we learn this?

State-of-the-art performance on various tasks
» Text prediction (your phone’s keyboard)
« Text mining
 Forecasting
« Spam filtering
- Compression (dimension reduction)
« Text generation
 Translation

https://thispersondoesnotexist.com/

https://thispersondoesnotexist.com/

s T e

S g

(]
ft

Compressed Data

Original Learned

mushroom :> :> representation

Encode Decode

https://community.canvasims.com/t5/Canvas-
Developers-Group/Canvas-LMS-Cheat-Detection-
System-In-Python/m-p /118134

“Hello world” of neural networks

* MNIST j- Ejl L'fl f- ‘T 2 "

e 3 43
* Handwritten digits

+ 28 * 28 pixels | 7 & &
« 60 000 training

images and 10 000 Cf] 5;; / 'J_[

testing images

“Hello world” of neural networks for
text: Sentiment classification with LSTM

Negative Neutral Positive
Positive

“I love Weights &
Biases!”

“l love Weights & ;
Biases!” |“'

“Great
visualizations on
W&B - thank you

Lukas & team”

“Great
visualizations on
W&B - thank you

Lukas & team”

“This product is
exactly what I've
been looking for”

“| hate Al and
Wa&aB”

Negative

“This product is
exactly what I've
been looking for”

“| hate Al and
W&B”

So what is a neural network?

Neural networks

y=f&X)+ e

* Neural networks are a way to specify f(X)
*You can display f(X) graphically

* Let’s graphically represent lipear regression!

f(Xi) — ,Bpxpi

p=1

Linear regression as neural net

Graphical representation FXD=at Y By
p=1
* Parameters are arrows

« Arrows ending in a node
are summed together

* Intercept is not drawn

Linear regression as neural net

Neural network jargon FOD=B+Y Wy
« Parameter = weight
* Intercept = bias

Single layer neural networks
y=fX)+ €

Specify a layer with K hidden units called A

K

fX)=PBo+ brAy

k=1
Where

P
Ay =hX)=g (WOk T z 1kaxp)
p:

Single layer neural networks

Input Hidden Output
L Laye L
Ay
N /
Ao
X \

Single layer neural networks

« What about the function g(-)?
* This is called the activation function

e A transformation of the linear combination of
predictors

P
he(X) =g (WOR T E 1kaxp>
p:

Activation functions

Linear: g(x) = x

ReLu: g(x) = max(0,]

[

Sigmoid: g(x) = L

1+e™X

———____—___—_——___,,—”

» Rectified linear (ReLu) is
most popular nowadays

« Nonlinearity necessary!
Otherwise: collapse to
linear regression

Single layer neural networks

Input Hidden Output
L Laye L
Ay
N /
Ao
X \

Feed-forward Neural Networks

Feed-forward neural networks

We can go deeper
« More hidden layers after one another
« Higher-order features composed of lower-order features

Universal function approximation theorem, version 2
Any “well-behaved” function can be represented by neural net
of sufficient depth with nonlinear activation function

Feed-forward neural networks

Input
layer

Hidden

fl(X)—> Yl

fg(X)—) Yg

Feed-forward neural networks

Feed-forward network -
architecture defined by:

 Number of layers

 Number of hidden units
In each layer

 Activation function for
each layer

e Activation function for
output layer

Keras!

library(keras)

model dff <-
keras_model_sequential() %>%
layer flatten(input_shape
layer_dense(units = 256, activation "relu") %>%
layer_dense(units = 128, activation "relu") %>%
layer_dense(10, activation = "softmax")

c(28, 28)) %>%

Keras!

summary(model _dff)

Layer (type) Output Shape Param #
flatten (Flateen) (wne, 7800 0o
dense_1 (Dense) (None, 256) 200960
dense_2 (Dense) (Nome, 128) 32896
dense_3 (Dense) ~ (Nome, 100 129

Total params: 235,146
Trainable params: 235,146
Non-trainable params: 0

How to estimate parameters?

Estimating parameters

* We need some way to measure how well the network does
« Parameters that make the network perform well are good!

Loss function

» For continuous outcomes you can use squared error
L(O) = (f(X;;0) —v;)?

* For binary outcomes you can use binary cross-entropy

L(9) = —(y; log(f (X;;0)) + (1 — y) log(f (X;; 6)))

Gradient descent

Iteration: step of size 1 in the direction of the negative gradient

pU+D = gi) — 1. g(6D)

But in neural networks, how do we compute gradients?

We have functions of functions!

Software like tensorflow / Keras / torch does this for you!

Backpropagation: smart repeated use of the chain rule to compute
derivatives

Convolutional Neural Networks

What is a convolution

: Con)volution is applying a kernel (filter) over data (text, image,
etc.

* The kernel (filter) defines which feature is important in the
data

What is a convolution

https://github.com/vdumoulin/conv_arithmetic

1x1

1x0

1x1

0x0

1x1

1x0

Ox1

0x0

1x1

What is a convolution

5x5 input.

413|4
2143
2|34

3x3 filter/kernel/feature detector. 3x3 convolved feature/
activation map/feature map

Convolution layers

e A convolutional neural
network is a NN with one or
more convolution layers

* The parameters / weights in
a convolution layer are the
elements of the filter

* The filter is learnt by the
network!

32

convolve

FIGURE 10.8. Architectu
Conwvolution layers are inte
size by a factor of 2 in botl

Pooling layer

« Convolution layers are
usually followed by a
pooling layer

« Reduces dimensionality

 Location invariance:
Robustness against pixel
shift / small rotations

* Max pool most common

32

convolve

FIGURE 10.8. Architecture of a de
Conwvolution layers are interspersed 1
size by a factor of 2 in both dimensic

Pooling layer

Max pool

— N o

—_— O DN

DO QO — Ot

O =N W

ll\) wl

I"-b C)_‘I

Architecture of a CNN

32

convolve

FIGURE 10.8. Architecture of a deep CNN for the CIFAR100 classification task.
Conwvolution layers are interspersed with 2 X 2 max-pool layers, which reduce the
size by a factor of 2 wn both dimensions.

Break

Recurrent Neural Network
(RN N)

Recurrent Neural Network

« Another famous architecture of Deep Learning

 Preferred algorithm for sequential data

* time series, speech, text, financial data, audio, video,
weather and much more.

« text: sentiment analysis, sequence labeling, speech
tagging, machine translation, etc.

« Maintains internal memory, thus can remember its
previous inputs

42

Simple recurrent network

hidden, z(t)

N copy Z

@ hidden, z(t-1)

LA

)
]
A

6

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

43

Simple recurrent network

5

g
&

@—>—@®

L]
®—{>-@ :
&
=]

L

time

3
B

5
o7
-
%
_>® =
g

r—

Training RNNs

* RNNs can be trained using “backpropagation through time.”
« Can viewed as applying normal backprop to the unrolled

network.
® . ' . ' training outputs
A - b G
AP - AR
) ® ® ® ® training inputs

backpropagated errors

45

The problem of Vanishing Gradient

. Consri]der a RNN model for a machine translation task from English to
Dutc

» It has to read an English sentence, store as much information as
possible in its hidden activations, and output a Dutch sentence.

» The information about the first word in the sentence doesn’t get used
In the predictions until it starts generating Dutch words.

* There's a long temporal gap from when it sees an input to when it uses
that to make a prediction.

* It can be hard to learn long-distance dependencies.

* In order to adjust the input-to-hidden weights based on the first input,
the error signal needs to travel backwards through this entire pathway.

46

Long Short-Term Memory
(LSTM)

Long Short-Term Memory

 Prevents vanishing/exploding gradient problem by:
* Introducing a gating mechanism
 turning multiplication into addition

 Designed to make it easy to remember information over long
time periods until it's needed.

* The activations of a network correspond to short-term
memory, while the weights correspond to long-term memory.

48

LSTM architecture

4 N N D
> D > —»
% Ganh
A I o tanh | | O T A
L PEpEE l I o "
\I J Clr 4 \I >

O—>>->—<

Neural Network Pointwise Vector
Layer Operation Transfer

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Concatenate Copy

49

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Extensions

* Bi-directional network: separate LSTMs process forward and
backward sequences, and hidden layers at each time step are
concatenated to form the cell output.

- Gated Recurrent Unit (GRU): alternative RNN to LSTM that uses
fewer gates, combines forget and input gates into “update”
gate, eliminates cell state vector.

* Attention: Allows network to learn to attend to different parts
of the input at different time steps, shifting its attention to
focus on different aspects during its processing.

50

State-of-the-Art

e Recurrent neural networks
e |[STM
 GRU
* Bi-directional network

* Transformers
« Contextual embeddings
* Large Language Models --> ChatGPT

51

Large Language Models

UPON A} TIME

Transformers!

Transformers!

Output
Probabilities

(near) Bag-of- Recurrent Transformer

Neural LSTM

(I Add & Norm P\\ Words Network (LLM)

Feed
Forward
e | ~ | Add & Norm |<_:
Add & Norm =
—{Add&Nom] Ut Heao
Feed Attention
Forward 7}
A Clmnll University We gratefully acknowledge
) S—
N [Add & Norm |
* | ~{(Add & Norm)
Masked N3
Multi-Head Multi-Head AT X1V > os > arxiv:1706.0762
Attention Attention
A) A) Computer Science > Computation and Language
_ Y, \ _}J [Submitted or: 12 Jun 2017 (v1), last revised 2 Aug 2023 (this version, v7)]
" N Attention Is All You Need
Positional D Positional
i E' : Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, lllia Polosukhin
ncodaing Encoding
]nput Output The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the
Embedding Embedding encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and
convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model
T T achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French

translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the
Inputs OUTDUJ[S literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.

(shifted right)

Transformer foundation models:
BERT, GPT, BART

* BERT: Bidirectional Encoder Representations

from Transformers. P i i
e .. Bidirectional Al i
* Masked word prediction, text
representation Wi Fg g 4.4

(a) BERT: Random tokens are replaced with masks, and (b) GPT: Tokens are predicted auto-regressively, meaning

o G PT: G e N e rat | Ve P re't ra N e d T ra n SfO rm e r. the document is encoded bidirectionally. Missing tokens GPT can be used for generation. However words can only
are predicted independently, so BERT cannot easily be condition on leftward context, so it cannot learn bidirec-
* Next word prediction, text generation,

used for generation. tional interactions.

Bidirectional E> Autoregressive
« 7. DA . Encoder Decoder
* BART = “BERT+GPT”: Bidirectional encoder - ===
and Auto-Regressive decoder Transformers. A_B_E <s>ABCD
. . (¢) BART: Inputs to the encoder need not be aligned with decoder outputs, allowing arbitary noise transformations. Here, a
[} NOIsed text reconstruct,on document has been corrupted by replacing spans of text with a mask symbols. The corrupted document (left) is encoded with
7

a bidirectional model, and then the likelihood of the original document (right) is calculated with an autoregressive decoder.

ABCDE

For fine-tuning, an uncorrupted document is input to both the encoder and decoder, and we use representations from the final

summarization, translation, spelling tiliden g i e dicods
correction

Dutch Transformers!

RobBERT

. A A Dutch RoBERTa-based Language Model

RobBERT: Dutch RoBERTa-based Language Model.

RobBERT is the state-of-the-art Dutch BERT model. It is a large pre-trained general Dutch language
model that can be fine-tuned on a given dataset to perform any text classification, regression or

token-tagging task. As such, it has been successfully used by many researchers and practitioners

for achieving state-of-the-art performance for a wide range of Dutch natural language processing

tasks, including:

Emotion detection

Sentiment analysis (book reviews, news articles®)

Coreference resolution

Named entity recognition (CoNLL, job titles*, SoNaR)

Part-of-speech tagging (Small UD Lassy, CGN)

Zero-shot word prediction

Humor detection

Cyberbulling detection

Accuracy

Accuracy on POS tagging in function of training size
1,0_

-0- RobBERT v1
-0- RObBERT v2
-0- mBERT
: | -0- BERTje
O T T T T |2 T T T T T T |3 T T T T T T 4
10 10 10
of labeled sequences

Conclusion

* Neural networks are popular methods especially for
text mining

 Feed-forward & RNN & CNN
* RNN works better for text data

 Large Language Models such as GPT are based on RNN
and attention deep learning layer.

58

Practical 7

Application and comparison of deep
neural networks for text classification.

Questions?

