Sentiment Analysis

Text Mining, Transforming Text into Knowledge

Ayoub Bagheri

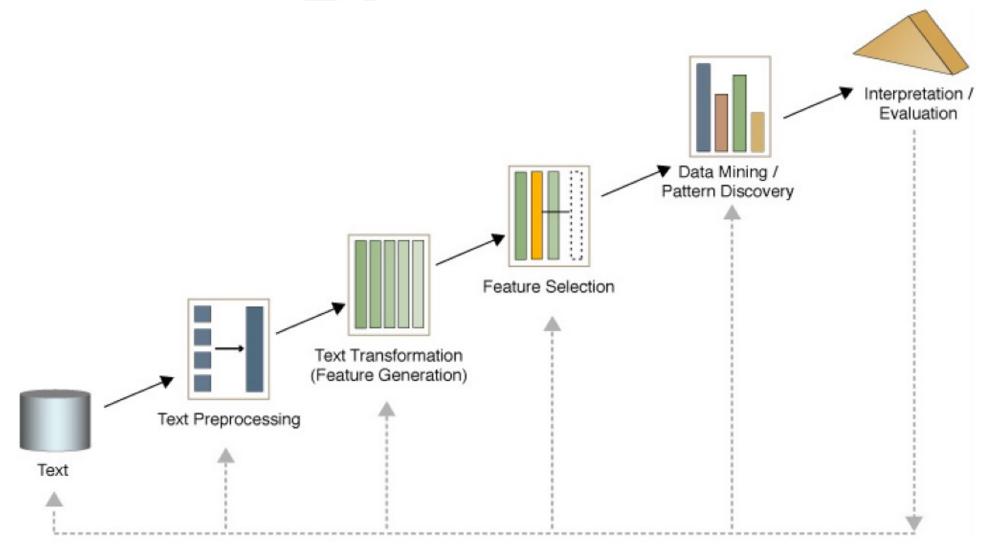
Last week

- Deep learning
- Feedforward vs Convolutional vs Recurrent neural network
- Large language models

Today

- Sentiment analysis
 - Lexicon and dictionary-based sentiment analysis
 - Machine learning-based sentiment analysis
- Sentiment classification
 - Document level
 - Sentence level

Text mining process



Text mining process

- Data: Text
- **Text Preprocessing:** is the process of cleaning, normalizing, and structuring raw text data into a format suitable for analysis or input into NLP models. (week 2)
- **Text transformation, feature generation:** involves converting text data into a different format or structure, such as numerical vectors or simplified forms, to make it suitable for analysis or modeling. (weeks 1, 2, 3, 6, 7, 8)
- Feature selection: is the process of identifying and selecting the most relevant features from a dataset to improve model performance and reduce complexity. (week 4)
- **Data mining, pattern discovery**: is the process of extracting meaningful patterns and knowledge from text. (weeks 3, 5, 7, 8, 9)
- Interpretation / Evaluation: is the process of understanding and explaining the model and patterns / is the assessment process to measure performance and quality. (weeks 3-9)

Sentiment Analysis

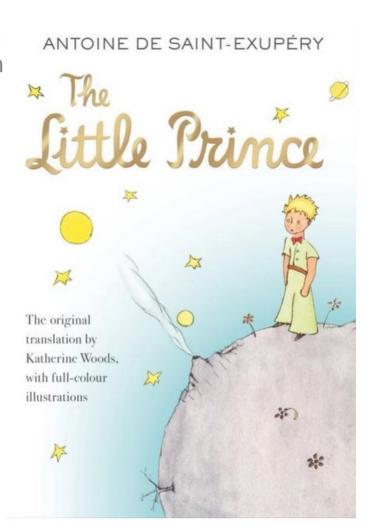
An example

This is a nice book for both young and old. It gives beautiful life lessons in a fun way. Definitely worth the money!

- + Educational
- + Fun
- + Price

Nice story for older children.

- + Funny
- Readability



Sentiment analysis

"task of classifying the polarity of a given text."

Classify the following Google reviews of UU into

- 1. "Great university and great campus"
- 2. "Overrated university. The facilities for the humanities studies are severely outdated and really poor quality."
- 3. "Good school but hideous building"

Sentiment

- Sentiment
 - Feelings, Attitudes, Emotions, Opinions
 - A thought, view, or attitude, especially one based mainly on emotion instead of reason
 - Subjective impressions, not facts

Sentiment analysis

- Sentiment analysis = opinion mining
- Use of NLP, text mining and computational techniques to automate the extraction or classification of sentiment from text.

Practical definition of sentiment/opinion

```
An opinion is a quintuple

( entity, aspect, sentiment, holder, time)

where
```

- entity: target entity (or object).
- aspect: aspect (or feature) of the entity.
- sentiment: +, -, or neu, a rating, or an emotion.
- *holder*: opinion holder.
- *time*: time when the opinion was expressed.

Opinion types

- Regular opinions: Sentiment/opinion expressions on some target entities
 - Direct opinions:
 - "The touch screen is really cool."
 - Indirect opinions:
 - "After taking the drug, my pain has gone."
 - Positive or negative? About what/whom?
- Comparative opinions: Comparison of more than one entity.
 - E.g., "iPhone is better than Blackberry."

Sentiment analysis tasks

- Simplest task:
 - Is the attitude of this text positive or negative?
- More complex:
 - Is the attitude of this text positive, negative or neutral?
 - Label the attitude of this text from 1 to 5
- Advanced:
 - Detect the target, source, or complex opinion types
 - Implicit opinions or aspects

Document-level

- Classify a document (e.g., a review) based on the overall sentiment of the opinion holder
 - Classes: Positive, negative (possibly neutral)
 - Neutral means no sentiment expressed
 - "I believe he went home yesterday."
 - "I bought an iPhone yesterday"
- An example review:
 - "I bought an iPhone a few days ago. It is such a nice phone, although a little large. The touch screen is cool. The voice quality is great too. I simply love it!"
 - Classification: positive or negative?
- It is basically a text classification problem

Sentence-level

- Classify the sentiment expressed in a sentence
 - Classes: positive, negative (possibly neutral)
- But bear in mind
 - Explicit opinion: "I like this car."
 - Fact-implied opinion: "I bought this car yesterday and it broke today."
 - Mixed opinion: "Apple is doing well in this poor economy"

Methods for sentiment analysis

Lexicon-based methods

- Dictionary based: Using sentiment words and phrases (e.g., good, wonderful, awesome, troublesome, cost an arm and leg)
- Corpus-based: Using co-occurrence statistics or syntactic patterns embedded in text corpora
- Supervised learning methods: to classify reviews into positive and negative.
 - Traditional Machine Learning: Naïve Bayes, Support Vector Machine
 - Deep learning: BERT, GPT

Lexicon-based Methods

- Old-school sentiment analysis
- **Algorithm.** Start with a list of "positive" words and "negative" words, the "lexicon". Then count them.

Sentiment = Total no. positive words – Total no. negative words.

- Popular lexicons are: LIWC, FINN, bing, NRC, ...
- Tidytext has AFINN, bing, and nrc
- There are also domain-specific sentiment lexicons, and lexicons for languages that are not English

Basic algorithm

- · Detect sentiment in two independent dimensions:
 - Positive: {1, 2, ... 5}
 - Negative: {-5, -4,... -1}
- Example: "He is brilliant but boring"
 - Overall sentiment = ?

Basic algorithm

- Detect sentiment in two independent dimensions:
 - Positive: {1, 2, ... 5}
 - Negative: {-5, -4,... -1}
- Example: "He is brilliant but boring"
 - Sentiment('brilliant') = +4
 - Sentiment('boring') = -2
 - Overall sentiment = +2

AFINN lexicon (Finn Årup Nielsen):

- assigns words with a score that runs between -5 and 5, with negative scores indicating negative sentiment and positive scores indicating positive sentiment
- terms manually labelled for valence by Finn Årup Nielsen between 2009 and 2011.
- Specifically created for sentiment analysis of microblogs such as Twitter

```
get sentiments("afinn")
## # A tibble: 2,477 x 2
                value
     word
     <chr>
                <db1>
   1 abandon
   2 abandoned
   3 abandons
   4 abducted
   5 abduction
   6 abductions
   7 abhor
   8 abhorred
   9 abhorrent
## 10 abhors
                    -3
## # ... with 2,467 more rows
```

bing lexicon (Bing Liu and collaborators):

- categorizes words into positive and negative categories
- Developed for mining and summarizing customer reviews
- First, adjective words were identified using a natural language processing method. Second, for each opinion word, semantic orientation was determined

```
## # A tibble: 6,786 x 2
                 sentiment
     word
     <chr> <chr>
   1 2-faces
               negative
   2 abnormal
                 negative
   3 abolish
                 negative
   4 abominable
                 negative
   5 abominably
                 negative
   6 abominate
                 negative
   7 abomination negative
                 negative
   8 abort
                 negative
   9 aborted
## 10 aborts
                 negative
## # ... with 6,776 more rows
```

nrc lexicon (Saif Mohammad and Peter Turney):

- categorizes words into categories of positive, negative, anger, anticipation, disgust, fear, joy, sadness, surprise, and trust
- annotations were manually done by crowdsourcing

```
## # A tibble: 13,901 x 2
                 sentiment
     word
     <chr>
                 <chr>>
   1 abacus
                trust
   2 abandon
               fear
   3 abandon
                negative
                 sadness
   4 abandon
   5 abandoned
                 anger
   6 abandoned
                 fear
                 negative
   7 abandoned
   8 abandoned
                 sadness
   9 abandonment anger
## 10 abandonment fear
## # ... with 13,891 more rows
```

Corpus-based sentiment analysis

- · PMI between two words:
 - How much more do two words co-occur than if they were independent?

$$PMI(word_1, word_2) = log_2 \frac{P(word_1, word_2)}{P(word_1)P(word_2)}$$

Corpus-based sentiment analysis

- P(word) estimated by hits(word)/N
- P(word1,word2) by hits(word1 NEAR word2)/N^2

$$PMI(word_1, word_2) = log_2 \frac{hits(word_1 \text{ NEAR } word_2)}{hits(word_1)hits(word_2)}$$

Example using NRC

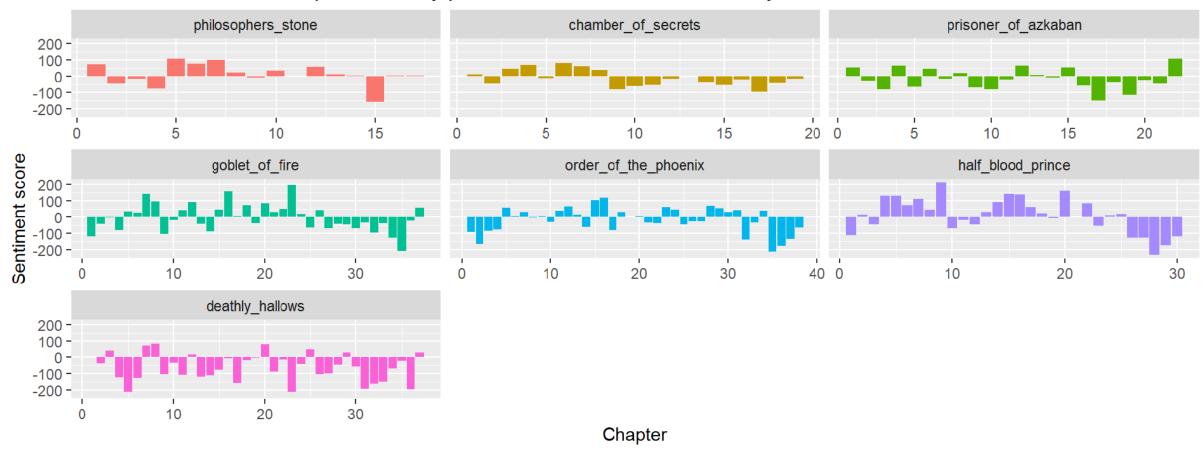
Most common joy words in Harry Potter

```
## # A tibble: 440 x 2
##
      word
                   n
      <chr>
##
               <int>
    1 good
                1065
   2 found
                 614
    3 ministry
                 576
    4 feeling
                 391
##
    5 magical
                 380
    6 white
                 331
   7 green
                 294
##
   8 mother
                 284
   9 smile
                 244
## 10 hope
                 234
## # ... with 430 more rows
```

Most common fear words in Harry Potter

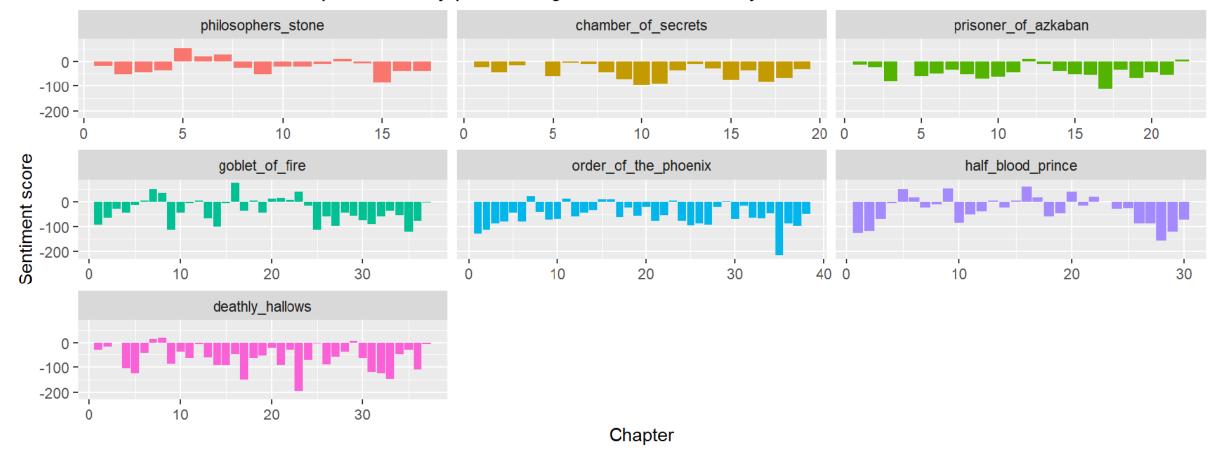
```
## # A tibble: 888 x 2
      word
##
                  n
      <chr>
              <int>
                757
    1 death
    2 feeling
                391
   3 fire
                388
   4 crouch
                297
    5 shaking
                277
    6 scar
                276
   7 mad
                269
   8 kill
                267
   9 elf
                259
## 10 watch
                256
## # ... with 878 more rows
```

Sentiment score over chapters of harry potter, AFINN sentiment dictionary

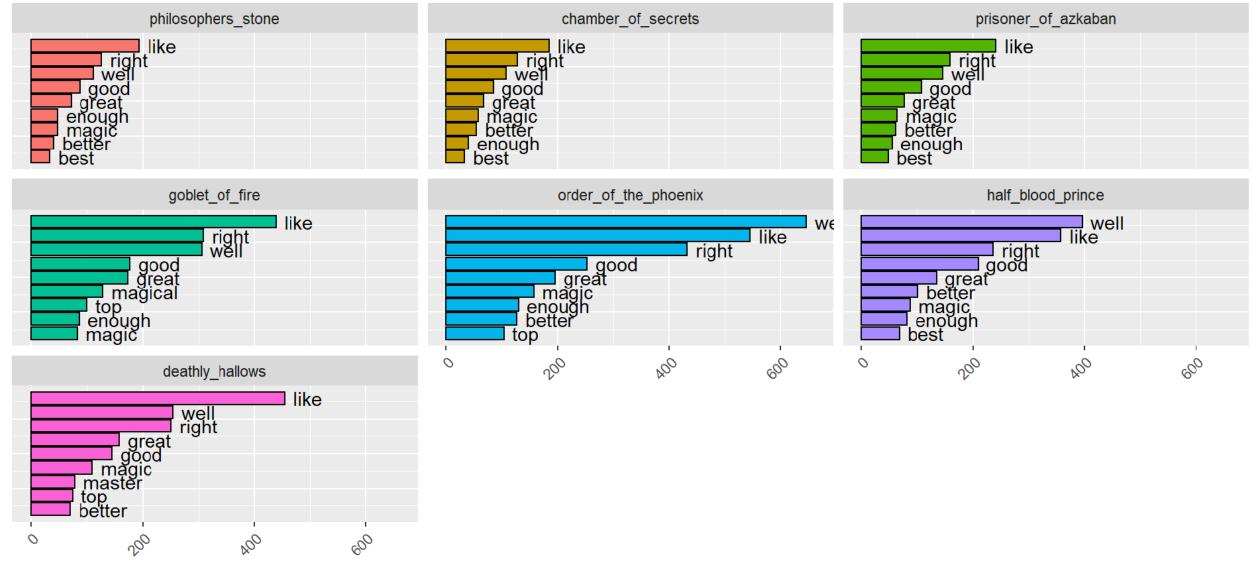


Plot of novel four to six changes towards a negative sentiment towards the end, while the seventh novel has a quite negative sentiment overall.

Sentiment score over chapters of harry potter, bing sentiment dictionary

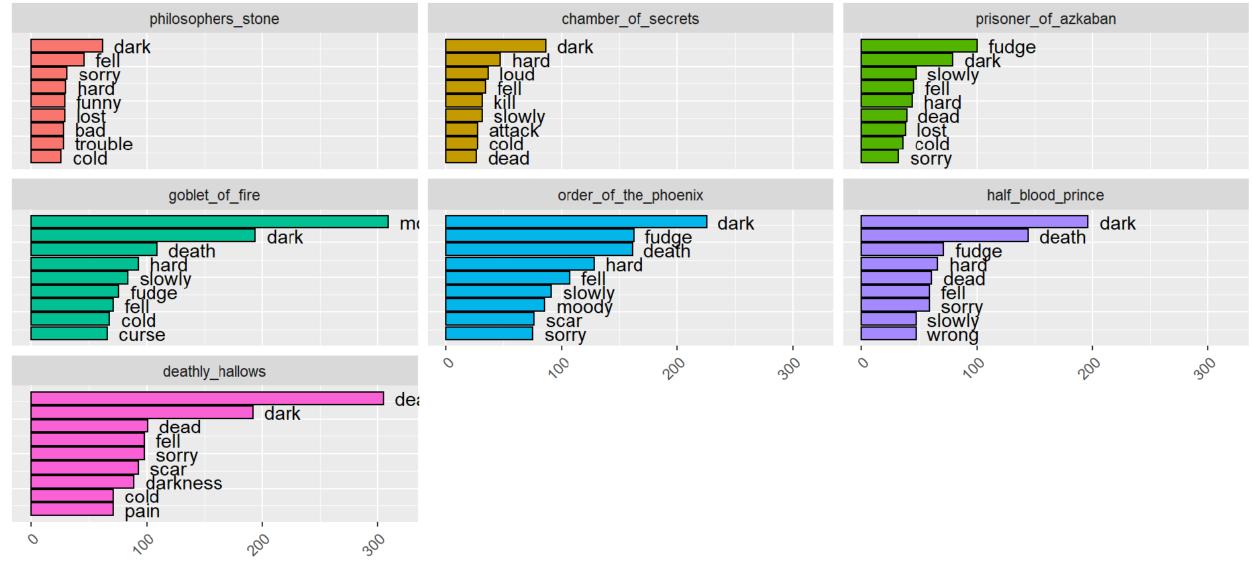


Most frequent positive words in Harry Potter, bing lexicon

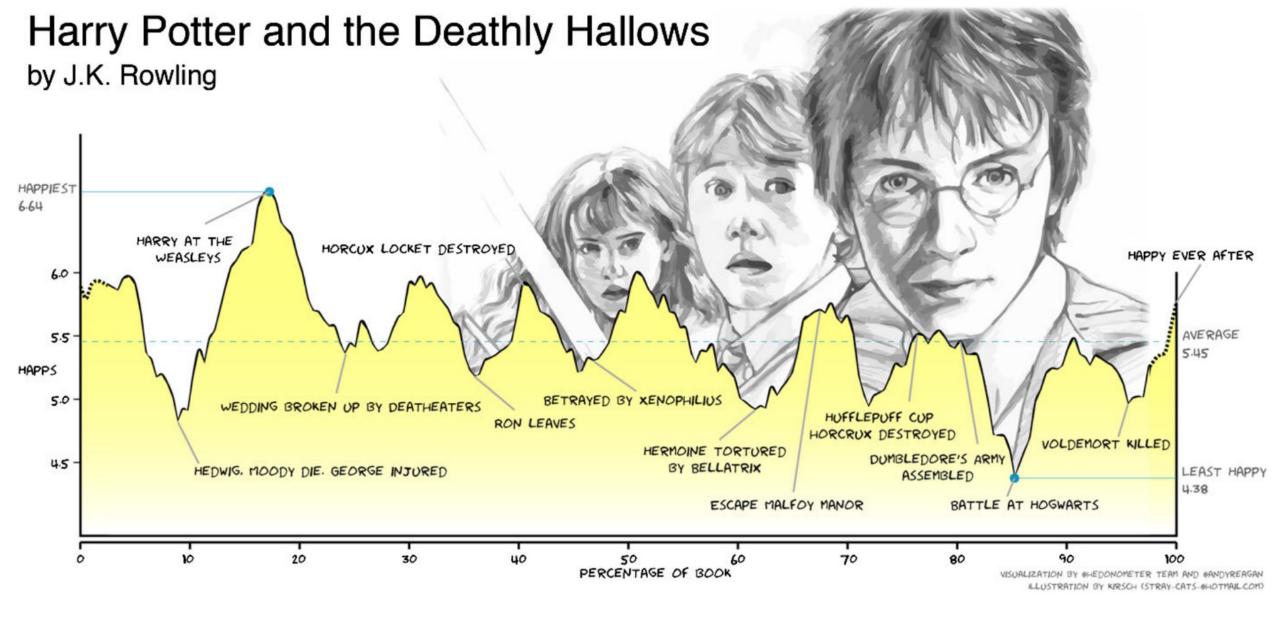


Word count

Most frequent negative words in Harry Potter, bing lexicon



Word count



Reagan et al. (2016). The emotional arcs of stories are dominated by six basic shapes. http://doi.org/10.1140/epjds/s13688-016-0093-1

- The "old-school" (lexicon-based) method is not great with:
 - Longer texts (why?)
 - Negation
 - Context-dependency in general
- You can also just consider this a **classification task**, where the input data is the text and the target is categorical

Break

Supervised Methods

Basic steps

- Pre-processing and tokenization
- Feature representation
- Feature selection
- Classification
- Evaluation

Sentiment tokenization issues

- Deal with HTML and XML markup
- Twitter mark-up (names, hash tags)
- Capitalization (preserve for words in all caps)
- Phone numbers, dates
- Emoticons
- Useful code:
 - Christopher Potts sentiment tokenizer
 - Brendan O'Connor twitter tokenizer

The danger of stemming

- The Porter stemmer identifies word suffixes and strips them off.
- But:
 - objective (pos) and objection (neg) -> object
 - competence (pos) and compete (neg) -> compet

Features for supervised methods

- The problem has been studied by numerous researchers.
- **Key**: feature engineering. A large set of features have been tried by researchers. E.g.,
 - Terms frequency and different IR weighting schemes
 - Part of speech (POS) tags
 - Opinion words and phrases
 - Negations
 - Stylistic
 - Syntactic dependency

Negation

Add NOT_ to every word between negation and following punctuation:

didn't like this movie , but I

didn't NOT_like NOT_this NOT_movie but I

Example

Kiritchenko et al. (2014)

- Features:
 - ngrams
 - character ngrams
 - all-caps: the number of tokens with all characters in upper case
 - POS
 - the number of negated contexts
 - sentiment lexicons
 - the number of hashtags, punctuation, emoticons, elongated words
- Classifier: linear-kernel SVM

Example

Kiritchenko et al. (2014)

System	Accuracy
a. Majority baseline	50.1
b. SVM-unigrams	71.9
c. Previous best result (Socher et al., 2013)	85.4
d. Our system	85.5

Message-level task: The results obtained on the movie review excerpts dataset.

https://www.svkir.com/papers/Kiritchenko-et-al-sentiment-JAIR-2014.pdf

Supervised methods

Advantages

- Lead to better performance compared to lexicon-based approaches
- The output can be explained (most of the times)

Disadvantages

- They need training data
- They can't capture the context, need more advanced methods; see next slide
- Based on feature engineering that is a tedious task
- Not good performance in multiclass classification

Sentiment analysis with LLM

Devlin et al. 2019

Sentiment analysis was one of the tasks in the BERT paper

System	MNLI-(m/mm)	QQP	QNLI	SST-2
	392k	363k	108k	67k
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4
OpenAI GPT	82.1/81.4	70.3	87.4	91.3
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5
BERT _{LARGE}	86.7/85.9	72.1	92.7	94.9

https://paperswithcode.com/task/sentiment-analysis

Benchmarks

Trend	Dataset	Best Model	201 201 201 201	Yelp Fine-grained classification	XLNet	
aid aid air air air	SST-2 Binary classification	SMART-RoBERTa Large	2 20 20 20 20 20 20	MR	T EFL	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IMDb	NB-weighted-BON + dv-cosine	13 14 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	Amazon Review Polarity	P BERT large	
261 261 201 207 208 288	SST-5 Fine-grained classification	RoBERTa-large+Self- Explaining	8 0 8 0 201 201 201 201 201 201	Amazon Review Full	P BERT large	
200 201 200 200	Yelp Binary classification	Y XLNet	20, 20, 20, 20, 20	User and product information	P BiLSTM+CHIM	
201 201 201 201 201	Yelp Fine-grained classification	▼ XLNet	25 26 20 20 20 20	CR	T EFL	
			Show all 32 benchmarks			

Pre-trained models

https://huggingface.co/blog/sentiment-analysis-python

- Twitter-roberta-base-sentiment is a roBERTa model trained on ~58M tweets and fine-tuned for sentiment analysis (https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment)
- SST-2 BERT: Fine-tuned on the Stanford Sentiment Treebank (SST-2) which consists of sentences from movie reviews. The model is well-suited for general sentiment analysis tasks. (https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english)
- Bert-base-multilingual-uncased-sentiment is a model fine-tuned for sentiment analysis on product reviews in six languages: English, Dutch, German, French, Spanish and Italian (https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment)
- Distilbert-base-uncased-emotion is a model fine-tuned for detecting emotions in texts, including sadness, joy, love, anger, fear and surprise (https://huggingface.co/bhadresh-savani/distilbert-base-uncased-emotion)

Conclusion

Conclusion

- Sentiment analysis
 - Document-level versus sentence level sentiment classification
- Lexicon-based method is not great
- Supervised learning methods improve old school ones
 - Could use BoW and TF-IDF, sometimes better
 - Sometimes BoW similar problems as lexicon-based method
 - Big disadvantage is that you will need (partly) labeled data
- LLMs and deep learning-based methods perform better

Practical IMDB sentiment classification

Remarks

• Next week: Responsible Text Mining & Applications

- Notes about the exam:
 - https://textminingcourse.nl/exams/FinalExam.html

Questions?

a.bagheri@uu.nl